Find the energy (in eV) of the ground state of the atom to an accuracy of
three
significant digits. Also, plot the corresponding wavefunction. Take e =
3.795
(eVÅ)1/2, m = 0.511x106 eV/c2, and a = 3 Å, 5 Å, 7 Å. In these units ħc
= 1973
(eVÅ). The ground state energy is expected to be above -12 eV in all
three cases.
Apparatus- scilab software,Laptop .
Algorithm-
1. Write the all given values of h,m,n,r0,e .
2.Use the linspace command .
3. Give the matrix of ‘A’and ‘V’ .
4. Using the for loop .
5. write the equation of v(i,i) .
6. write the equation of ‘H’ .
7. Using the ‘spec(H)’ command for eigen value .
8.Using the ‘subplot’ command and plot the potential graph
and other three graphs.
9. Using the ‘legend’ command .
10.Give the display command and show the ‘eigen value’ .
INPUT - 2
a=3,5,7
h=1973
m=0.511e6
n=200
r0=1e-15
rm=10
e=3.795
r=linspace(r0,rm,n)
d=(rm-r0)/n
A=zeros(n,n)
V=zeros(n,n)
A(1,[1:2])=[-2,1];
A(n,[n-1:n])=[1,-2];
for i=2:n-1
A(i,[i-1:i+1])=[1,-2,1];
end
for i=1:n
V(i,i)=((e.^2)/r(i))*(exp(-r(i)/a));
V1(i)=(-(e.^2)/r(i))*(exp(-r(i)/a));
end
H=((h.^2)/(2*m*d*d)*A)+V
[y,eig]=spec(H)
subplot(2,2,1)
for i=10:n
plot(r(i),V1(i),'y+')
xlabel("X-AXIS")
ylabel("Y-AXIS")
end
disp(eig(n-1,n-1))
disp(eig(n-2,n-2))
disp(eig(n-3,n-3))
subplot(2,2,2)
plot(r,abs(y(:,n-1)),'r')
xlabel("X-AXIS")
ylabel("Y-AXIS")
subplot(2,2,3)
plot(r,abs(y(:,n-2)),'b')
xlabel("X-AXIS")
ylabel("Y-AXIS")
subplot(2,2,4)
plot(r,abs(y(:,n-3)),'g')
xlabel("X-AXIS")
ylabel("Y-AXIS")
subplot(2,2,5)
legend('y,ground state n=1,y2 first n=2,l=0')
OUTPUT – 2
EIGEN VALUES-*for a=3, *for a=7,
1. 9.22776 1. 11.503524
2. 0.4609445 2. 1.7146218
3. - 0.9688559 3. - 0.1459806
*for a=5,
1. 10.784776
2. 1.2427585
3. - 0.4712703
No comments:
Post a Comment