Apparatus- scilab software,Laptop .
Algorithm- 1. Write the all given values of h,m,n,r0,e .
2.Use the linspace command .
3. Give the matrix of ‘A’and ‘V’ .
4. Using the for loop .
5. write the equation of v(i,i) .
6. write the equation of ‘H’ .
7. Using the ‘spec(H)’ command for eigen value .
8.Using the ‘subplot’ command and plot the potential graph and other three graphs.
9. Using the ‘legend’ command .
10.Give the display command and show the ‘eigen value’ .
INPUT-1
h=1973
m=0.511e6
n=200
r0=1e-15
rm=10
e=3.795
r=linspace(r0,rm,n)
d=(rm-r0)/n
A=zeros(n,n)
V=zeros(n,n)
A(1,[1:2])=[-2,1];
A(n,[n-1:n])=[1,-2];
for i=2:n-1
A(i,[i-1:i+1])=[1,-2,1];
end
for i=1:n
V(i,i)=((e.^2)/r(i));
V1(i)=(-(e.^2)/r(i));
end
H=((h.^2)/(2*m*d*d)*A)+V
[y,eig]=spec(H)
subplot(2,2,1)
for i=10:n
plot(r(i),V1(i),'y+')
xlabel("X-AXIS")
ylabel("Y-AXIS")
end
disp(eig(n-1,n-1))
disp(eig(n-2,n-2))
disp(eig(n-3,n-3))
subplot(2,2,2)
plot(r,abs(y(:,n-1)),'r')
xlabel("X-AXIS")
ylabel("Y-AXIS")
subplot(2,2,3)
plot(r,abs(y(:,n-2)),'b')
xlabel("X-AXIS")
ylabel("Y-AXIS")
subplot(2,2,4)
plot(r,abs(y(:,n-3)),'g')
xlabel("X-AXIS")
ylabel("Y-AXIS")
subplot(2,2,5)
legend('y,ground state n=1,y2 first n=2,l=0')
OUTPUT- 1.
EIGEN VALUE -
13.448465
3.3668089
1.2713873
ReplyDeleteForm where i can find the exact theory behind this case and other four cases ?
Regards